Metal mesh projected-capacitive touch screens simulated with Fieldscale SENSE™

—

March, 2017
P-cap touch sensors

Intro

- Extensively used today in **portable devices**, such as smartphones and tablets.
- Growing usage in **industrial** and **automotive** applications.
- **Mutual-capacitive** touch sensors (instead of self-capacitive ones) are more often used as they offer:
 - real-time detection of **multiple touches**
 - higher resolution
 - less vulnerability to electromagnetic interference.
ITO

Intro

- Sensor electrodes are typically made of Indium Tin Oxide (ITO) due to its high optical transmittance.
- ITO disadvantages:
 - limited supply
 - considerable cost
 - inflexibility, not suitable for wearables and flexible touch screens
 - high resistivity, slow response, not suitable for large touch screens
Metal mesh

Intro

- “ITO-alternatives”:
 - carbon nanotubes
 - conductive polymers
 - graphene
 - silver nanowires
 - metal mesh

Pros:
 - flexibility
 - low resistivity
 - high optical transmission
 - low cost

Source: Bison Optronics Co., Ltd.
http://www.bisonoptronics.com
Description of the simulated p-cap sensor

Simulated model

Stack Up Configuration

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness</th>
<th>Dielectric constant (ε_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover glass</td>
<td>variable (0.5/1/2 mm)</td>
<td>variable (6/8/10)</td>
</tr>
<tr>
<td>OCA</td>
<td>100 um</td>
<td>4.0</td>
</tr>
<tr>
<td>Transmitters</td>
<td>200 nm</td>
<td>-</td>
</tr>
<tr>
<td>PET film</td>
<td>50 um</td>
<td>3.2</td>
</tr>
<tr>
<td>OCA</td>
<td>50 um</td>
<td>3.5</td>
</tr>
<tr>
<td>Receivers</td>
<td>200 nm</td>
<td>-</td>
</tr>
<tr>
<td>PET film</td>
<td>50 um</td>
<td>3.2</td>
</tr>
<tr>
<td>OCA</td>
<td>100 um</td>
<td>4.0</td>
</tr>
<tr>
<td>Polarizer</td>
<td>200 um</td>
<td>5.0</td>
</tr>
<tr>
<td>Display (or shielding)</td>
<td>600 um</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: Synaptics (SID, Boston 2012, Session M-3).
Metal mesh geometry

Simulated model

- 3x3 electrode array
 - Total array dim. 15mm x 15 mm
- Margins around the electrodes: \(s = 500 \text{ um} \)

- Electrode width: \(w = 5 \text{ mm} \)
- Gap between electrodes: \(g = 100 \text{ um} \)
Metal mesh geometry

Simulated model

- Line width (\(L_w \)):
 - 1 \(\mu m \)
 - 3 \(\mu m \)
 - 5 \(\mu m \)

- Line pitch (\(L_p \)):
 - 250 \(\mu m \)
 - 500 \(\mu m \)
 - 1000 \(\mu m \)
Finger size & position

Simulated model

- Cylinder with hemispherical tip:
 - Length: 10 mm
 - Diameter: 8 mm

- Finger placed just above the central electrode node, touching the cover glass
Simulation inputs & computed quantities

Simulation Settings in Fieldscale SENSE

- Capacitance Computation
 - BEM Method
 - Display and finger were assumed as grounded, perfect conductors
 - The mutual capacitance, C_m, between the central Tx & Rx was obtained, as affected by the finger presence
Simulation inputs & computed quantities

Simulation Settings in Fieldscale *SENSE*

- **Resistance Computation**
 - BEM Method
 - The edges of the metal mesh electrodes were defined as “ports”
 - Sheet resistance, R_s, of metal mesh was set equal to 0.1 Ohm/sq

Figure: Cell resistance definition
Simulation inputs & computed quantities

Simulation Settings in Fieldscale SENSE

- **RC constant**
 Rx electrode - unit cell

 \[\tau_{Rx} = R_{Rx}(C_{m0} + C_{Rx-Display}) \]

 \(R_{Rx} \): resistance of Rx-electrode per unit cell

 \(C_{m0} \): mutual capacitance between transmitter and receiver without finger presence

 \(C_{Rx-Display} \): capacitance between Rx-electrode and display (or shielding)

Capacitances used for RC constant extraction
Effects of metal mesh geometry; cover glass thickness 1 mm, $\varepsilon_r = 8$

Simulation Results

<table>
<thead>
<tr>
<th>Line pitch (um)</th>
<th>Line width (um)</th>
<th>C_{m0} (without finger, in pF)</th>
<th>C_m (finger touching the cover glass, in pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>1</td>
<td>1.994</td>
<td>1.933</td>
</tr>
<tr>
<td>250</td>
<td>3</td>
<td>2.495</td>
<td>2.431</td>
</tr>
<tr>
<td>250</td>
<td>5</td>
<td>2.697</td>
<td>2.634</td>
</tr>
<tr>
<td>500</td>
<td>1</td>
<td>0.876</td>
<td>0.827</td>
</tr>
<tr>
<td>500</td>
<td>3</td>
<td>1.105</td>
<td>1.050</td>
</tr>
<tr>
<td>500</td>
<td>5</td>
<td>1.252</td>
<td>1.195</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>0.307</td>
<td>0.278</td>
</tr>
<tr>
<td>1000</td>
<td>3</td>
<td>0.398</td>
<td>0.364</td>
</tr>
<tr>
<td>1000</td>
<td>5</td>
<td>0.459</td>
<td>0.421</td>
</tr>
</tbody>
</table>
Effects of metal mesh geometry; cover glass thickness 1 mm, $\varepsilon_r = 8$

Simulation Results

- Mutual capacitance, C_{m0}, between central Tx & Rx electrodes
- For a typical line pitch (250 ~ 500 um) C_{m0} is generally between 1 and 2.5 pF
- C_{m0} becomes higher as the metal mesh density increases, that is:
 - with decreasing line pitch
 - with increasing line width (smaller effect)

Parallel planes:

\[C = \varepsilon \frac{A}{d} \]

A increases \rightarrow C increases
Effects of metal mesh geometry; cover glass thickness 1 mm, $\varepsilon_r = 8$

Simulation Results

- Reduction of C_m due to finger presence

- ΔC_m is greater for a denser metal mesh:
 - narrower line pitch
 - wider line width (smaller effect)

- For line pitch = 250 um the effect of line width on ΔC_m becomes **negligible**.
Effects of metal mesh geometry; cover glass thickness 1 mm, $\varepsilon_r = 8$

Simulation Results

- Percentage reduction of C_m (%) due to finger presence

- In contrast with C_{m0} and ΔC_m, the ratio $\Delta C_m/C_{m0}$ increases as the metal mesh density decreases
 - with increasing line pitch
 - with decreasing line width (smaller effect)

- Higher $\Delta C_m/C_{m0}$ results in higher sensitivity of the touch sensor. This is not always preferable, as it may lead to unintended touch detection in case of hovering finger.
Simulation Results

- **Cell Resistance**

- As expected, a denser metal mesh provides a lower R_{cell}

- For a typical metal mesh geometry ($line \ width=3\,um \& \ line \ pitch=500\,um$): $R_{cell} \approx 20\, \Omega$
Simulation Results

- RC constant
 Rx electrode - unit cell

- A denser metal mesh results in a smaller RC constant, that is, faster response of the touch sensor.

- However, there are optical limitations regarding metal mesh density.
Effects of metal mesh geometry; cover glass thickness 1 mm, $\varepsilon_r = 8$

Simulation Results

- Optimum design of p-cap sensors requires:
 - C_{m0} in accordance with controller specifications: 1-2 pF
 - ΔC_m higher than controller sensitivity: 0.01 – 0.1 pF
 - $\Delta C_m/C_{m0}$: usually 4 – 8 %
 - Low RC constant

- **Metal mesh line pitch:**
 - optimum value is 250 ~ 500 um
 - for a coarser metal mesh $\Delta C_m/C_{m0}$ is higher, but C_{m0}, ΔC_m are greatly reduced and also RC constant increases

- **Metal mesh line width (1 ~ 3 um):**
 - does not significantly affect C_m
 - reducing line width improves optical transmission, but increases RC constant, due to higher R
Simulation Results

Effects of finger position – along z axis over the central node

- $\Delta C_m / C_{m0}$ is 4.9% when the finger touches the screen surface, but is reduced to almost zero for finger distance $\sim 5\ mm$.

- This ensures that no false-positive touch events by hovering fingers are detected by the controller.

Simulated touch sensor model:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal mesh line width</td>
<td>3 um</td>
</tr>
<tr>
<td>Metal mesh line pitch</td>
<td>500 um</td>
</tr>
<tr>
<td>Cover glass thickness</td>
<td>1 mm</td>
</tr>
<tr>
<td>Cover glass ε_r</td>
<td>8</td>
</tr>
</tbody>
</table>
Effects of finger location – along x-y level over the central node

Simulation Results

- When the finger moves from the center to the corner of the node, $\Delta C_m/C_{m0}$ becomes less than half (from 4.9% to 2.1%).
- This variation enables the **accurate detection** of the finger location during each charge cycle.
Conclusions

- Simulations with Fieldscale SENSE™ show that metal mesh density (line width and line pitch dimensions) has a great impact on the performance of p-cap touch sensors.

- As metal mesh becomes more coarse:
 - optical transmission increases.
 - $\Delta C_m/C_{m0}$ increases: the touch sensor becomes more sensitive.
 - but RC constant increases: the touch sensor has slower response.
Run the Simulations You Want